VISUAL GUIDE TO MACHINE LEARNING ALGORITHMS

A PORTFOLIO ARTIFACT FOR ROBERT McCOY INDIANA WESLEYAN UNIVERSITY

DECODING THE ALGORITHMS SHAPING OUR DIGITAL WORLD.

MACHINE LEARNING ALGORITHMS A Portfolio Artifact for Robert McCoy Indiana Wesloyan University

DECISION TREES

ALGORITHM TYPE

DOMAINS
TABULAR DATA, NLP

Ememple
Groupe data into K clueters
based on feature similarity

CONVOLUTIONAL NEURAL NETWORKS (CNNS)

Supervised Computer Vision

Example Object detaction
Uses convolutional
layers to extract
spatial features
from images.

SUPPORT VECTOR MACHINES (SVM)

Image Immage classification

Example Image Classification Cusstomer segmenttation

Tran set of sef un- corrclelated components

TRANSFORMER MODELS (BERT, GPT)

Supervised Language Self-supervised modeling

Utilizes self-attention meehanisms to capture contextual relationships in data.

RECURRENT NEURAL NETWORKS (RNNS)/LSTMs

Supervised NLP, Time Series

Example Sequence prediction
Processes sequiential data using loops to maintain memory ory.

DIFFUSION MODELS

Generative*l* Self-supervised

Learns to reverse a noising process, converting relististc new data.

CONVOLUTIONAL TRANSFORMER NEURAL **NETWORKS**

ALGORITHM TYPE SUPERVISED

DOMAINS COMPUTER VISION

APPLICATIONS **USES CONVOLUTIONAL** LAVERS TO AUTOMATICALLY **EXTRACT SPATIAL** FEATURES FROM ((3A.

MODELS

ALGORITHM / SELF-SUPERVISED

DOMAINS NLP

APPLICATIONS LANCUAGE MODELING

UTILIZES SELF-ATTENTION MECHANISMS TO CAPTURE CONTEXTUAL RELATIONSHIPS IN DATA.

RECURRENT **NEURAL NETWORKS**

ALGORITHM TYPE SUPERVISED

DOMAINS NLP, TIME SRIES

USES CYCLES IN THE NETWORK TO PROCESS SEQUENTIAL DATA.

DIFFUSION **MODELS**

GENERATIVE / SELF-SUPERVISED

GENERATIVE AI TEXT-TO-IMAGE **GENERATION**

LEARNS TO REVERSE A NOISING PROCESS. **EVENTUALLY CREATING** REALISTIC NEW DATA.

RANDOM FOREST

ALGORITHM TYPE SUPERVISED

DOMAINS
TABULAR DATION

APPLICATIONS FRAUD DETECTION

COMBINES MULTIPLE
DECISION TREES AND
AGGREGATES THEIR
OUTPUTS TO IMPROVE
PERFORMANCE.

AUTOENCODERS

ALGORITHM TYPE UNSUPERVISED

DOMAINSCOMPUTER VISION

APPLICATIONS IMAGE DENOISING

LEARN TO MAP INPUT DATA TO A COMPRESSED FORM AND THEN RECONSTRUCT THEM WITH A DECODER.

BONUS

ALGORITHMIC ENVIRONMENT

 DATA DIET (BIAS, COVERAGE)

LOSS

DATA

• OPTIMIZATION RULES (LOSS FUNCTIONS, REGULARIZATION)

REWARD

YOU DON'T JUST BUILD AN ALGORITHM—YOU CULTIVATE ITS BEHAVIOR.

TRAINING ISN'T NEUTRAL: WHAT YOU FEED, PRAISE, OR PUNISH GETS ENCODED.

'UNALIGNED BEHAVIOR' ISN'T REBELLION-IT'S REFLECTION.

BAD DATA, POORLY DEFINED LOSS, OR OVER-OPTIMIZED METRICS CREATE UNINTENDED GOALS.

IN THE WILD

WHY DO MODELS HALLUCINATE, REFUSE, OR EVEN SIMULATE AGGRESSION?

MODEL ALIGNMENT

HUMAN FEEDBACK