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Overview 

This report outlines a structured evaluation of neural network performance using a 

controlled, experimental approach inspired by my background in aerospace and turbine 

system diagnostics. The objective was to isolate performance gains in training and 

generalization while managing architectural complexity and data feature enrichment. Each 

phase introduces a specific change to the model configuration to observe its impact. 

Neural Network Component Definitions 

(Adapted from Géron, 2019; Goodfellow et al., 2016) 

• Layers: Structured stages in a neural network that data flows through, starting from 
input to output. Hidden layers allow the network to learn hierarchical patterns. 

• Neurons: Individual computing units within layers that apply weights, activation 
functions, and output signals to the next layer. 

• Weights: Learnable parameters that determine the influence of input values. 
Adjusted during training to minimize prediction error. 

• Activation Functions: Introduce non-linearity to neuron outputs. ReLU was used to 
allow learning of complex patterns. 

• Loss Functions: Quantify how far off predictions are from actual values. This 
project used a classification loss based on error minimization. 

• Optimization Algorithms: Methods used to adjust weights to reduce loss. The 
system applies a form of gradient descent to train the model. 

 

Visual Architecture and Flow 

Each model in this study uses a structure that feeds input features (e.g., X₁, X₂, their 

squared terms, and interactions) into an input layer. The data is then passed through a 

series of hidden layers (ranging from 2 to 4 layers), each containing multiple neurons. 

These neurons apply weighted sums, activate through ReLU, and pass signals forward. 



Finally, the output layer produces a classification prediction (blue or orange cluster). The 

architecture evolves in complexity across the test cases. 

Scope Rationale: Dataset Selection 

While TensorFlow Playground offers several datasets—such as the spiral, linear, and 

exclusive-or (XOR) configurations—this project focused exclusively on the circular 

(concentric) dataset. This choice was deliberate. The concentric dataset presents a 

unique challenge for neural networks due to its inherent non-linearity and radial symmetry, 

making it ideal for exploring the effects of architectural depth, feature engineering, and 

non-linear transformations. 

Given the complexity of this dataset and the clear demonstration of performance 

gains through systematic model refinement, the marginal value of applying the same test 

cycles to alternative datasets was limited. The lessons learned—especially in terms of 

overfitting, interaction effects, and the value of layered abstraction—are broadly 

transferable and would yield predictable results across simpler datasets. Thus, expanding 

the scope would have added volume but not necessarily depth or new insight. 

 

Testing Philosophy 

As a former gas turbine test engineer and military aviator, my work often required 

iterative system diagnosis under strict tolerances. For example, I once mitigated a bleed-air 

overtemperature issue by ganging two sequential valves to gradually reduce thermal load—

an approach that mirrors the logic applied here: layered systems reduce system stress 



more effectively than overloading a single stage. In neural networks, complexity is diffused 

through layers (Goodfellow et al., 2016). This inspired my decision to increase hidden 

layers instead of over-expanding neuron count or input features. 

This philosophy guided my decision-making throughout the test cycles. Each 

change was made in isolation to attribute cause and effect precisely—just as one would 

test a turbine or a flight control subsystem. Géron (2019) emphasizes the value of changing 

one parameter at a time during model development to clearly understand its impact, 

echoing the same principles used in high-stakes system testing environments like turbine 

diagnostics. 

  



Test Report 

Test 1 – Baseline Architecture  

• Features: X1, X2, X12, X22 

• Layers: 2 (6 neurons → 3 neurons) 

• Loss: Training: 0.016, Test: 0.154 

• Notes: Stable baseline. Some inner misclassification noted at ring boundaries. 

 

Figure 1. Baseline Test Configuration 

Baseline Configuration Rationale 

The initial test configuration (Test 1) was designed to serve as a foundational 

benchmark. I selected four input features—X₁, X₂, X₁², and X₂²—based on their geometric 

interpretability and ability to model concentric separation patterns. The squared terms 

were included to capture the radial curvature of the data, which would be poorly 

represented by linear terms alone. The architecture used two hidden layers with 6 and 3 

neurons respectively. This allowed for non-linear transformations without overfitting on the 

first run. An 80/20 training-to-test data split was assumed, consistent with standard 



practices in model validation (Géron, 2019). No interaction terms or trigonometric 

functions were introduced at this stage, ensuring the model would rely purely on basic 

spatial transformations. This configuration established a performance baseline against 

which future architectural and feature modifications could be clearly assessed. 

Test 2 – Added Interaction Feature  

• Added Feature: X1 x X2 

• Loss: Training: 0.010, Test: 0.165 

• Observation: Overfitting 

 

 

Figure 2. Added Feature: X1 x X2 

 

Expectation for Interaction Feature (X₁ × X₂) 

The inclusion of the X₁ × X₂ interaction term in Test 2 was motivated by a desire to 

introduce a non-linear coupling between the two primary input dimensions. From a signal-

processing and systems-testing perspective, interactions between input parameters often 

reveal hidden relationships not evident in isolation. It was hypothesized that their product 



might capture cross-dimensional influences or radial symmetry between the inner and 

outer data clusters. While the model's training loss decreased to 0.010, this improvement 

came at the cost of generalization: the test loss rose sharply to 0.165. This result signals 

overfitting, where the model adapts too closely to the training set and fails to generalize to 

unseen data. The outcome reinforces the importance of architectural restraint and 

supports the idea—echoed by Géron (2019)—that increased feature complexity does not 

always translate into better real-world performance. 

Test 3 – Sinusoidal Feature Expansion 

• Added: sin(X1), sin(X2) 

• Loss: Training: 0.015, Test: 0.147 

• Observation: Modest Improvement 

  

Figure 3. Added Feature: sin(X1), sin(X2) 

 

 



Expectation for Interaction Feature sin(X1), sin(X2) 

Building on the idea of capturing underlying geometry, Test 3 introduced periodic 

functions—specifically sin(X₁) and sin(X₂)—to account for oscillating decision boundaries. 

This approach was inspired by physical systems where cyclical patterns indicate 

resonance or rotational symmetry, suggesting that sinusoidal transformations might 

enhance recognition of concentric structures. The expectation was that sinusoids could 

refine circular boundary modeling using a different mathematical basis. Surprisingly, the 

results showed a modest improvement in generalization: test loss decreased from 0.165 to 

0.147, while training loss slightly increased from 0.010 to 0.015. This suggested that while 

the features introduced slight training inefficiency, they helped reduce overfitting. The 

outcome supports the idea that certain nonlinear transformations can improve decision 

boundary alignment—though their utility remains highly context-dependent (Géron, 2019). 

  



Test 4 –– Layer Expansion Without Sinusoidal Features 
 

• Architecture: 6-4-3-2 
• Features: X₁, X₂, X₁², X₂², X₁×X 
• Loss: Training: 0.002, Test: 0.74 

 

Figure 4. Layer Expansion Without Sinusoidal Features 

Rationale 

Following the modest performance improvement in Test 3 from adding sin(X₁) and 

sin(X₂), I decided to evaluate the relative contribution of architectural depth by removing 

the sinusoidal terms and doubling the number of hidden layers. The goal was to determine 

whether improved separation of the concentric clusters could be achieved by increasing 

network depth alone—effectively using layered filters rather than complex feature 

transformations. This approach echoes engineering logic: when a single-stage system 

lacks precision, adding intermediate filters can yield smoother system response—much 

like cooling bleed air in stages to avoid overpressure on the final valve. 



The results were significant: test loss dropped by nearly half, from 0.147 to 0.074, 

and training loss reached its lowest value at 0.002. This outcome suggests that additional 

hidden layers enabled richer hierarchical feature abstraction, and that in this case, depth 

outperformed additional sinusoidal inputs in achieving cleaner classification boundaries 

(Géron, 2019; Goodfellow et al., 2016). 

Reflection Statement 

This project mirrored the test environments I once led for the T56 engine series at 

Allison Gas Turbine and Rolls Royce—where I wasn’t just interpreting data, I owned the 

hardware, configured the builds, and designed tests to push systems to failure. Whether for 

certification or endurance testing, I relied on conversations with vendors, engineers, and 

stakeholders to explore material and system limits. In that same spirit, I used AI here not as 

a crutch, but as a collaborator—an intelligent partner to test ideas, provoke questions, and 

learn with. Each configuration was intentional, each variable isolated like a subsystem 

under review. I challenged AI just as I once challenged assumptions about airflow, fatigue, 

and thermal behavior. The real learning came not from accepting AI’s output, but from 

interpreting it, iterating on it, and shaping it with my own engineering logic. That’s the role I 

see for myself in this new era—not just using AI, but leading into the future by knowing how 

to think alongside it. 

 

  



 

Conclusion 

The most effective model configuration was not one that overloaded on input features, but 
one that structured complexity through sequential, layered abstraction. This mirrors 
how physical systems, like turbines or avionics, manage thermal and signal loads. The 
neural network benefitted most from increased depth, not increased width or input 
dimensionality (Géron, 2019; Goodfellow et al., 2016). 

This experiment confirms that visualizing neural architectures and testing configuration 
changes systematically can lead to more robust, generalizable models. Adding complexity 
through structure—not randomness—is key to advancing learning performance. 
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